Arghya Paul

School of Engineering - Chemical & Petroleum Engineering
Assistant Professor
Primary office:
785-864-6544
Learned Hall
Room 4165 C
University of Kansas
1530 W. 15th Street
Lawrence, KS 66045
Second office:
Learned Hall



Summary

Education

Ph.D., Biomedical Engineering, McGill University, Faculty of Medicine

MSc (A), Biotechnology, McGill University

B. Tech., Engineering, Biotechnology, Haldia Institute of Technology (WBUT)

Teaching

a) Classroom Teaching: I have always enjoyed teaching and with my teaching experience as Instructor in the CPE 656/756 Introduction to Biomedical Engineering course (Fall 14,15) and CPE 221 Chemical Engineering Thermodynamics (Spring 2016) I feel confident that I will be able to fulfill the challenging requirements of a teacher. These Engineering requires a much deeper understanding of the different engineering principles across the disciplines, including mechanical, chemical, materials, biochemical and bioengineering. Currently, these topics are not addressed together as a single course. The principal goal of my teaching effort for these courses is to bridge this gap by teaching the fundamental engineering principles and its relation to real world. For example, in CPE 656 i introduce them to the highly interdisciplinary field of biomedical science, discuss real clinical and pharmaceutical case studies, arrange lab trips to learn about different instruments and techniques, and try to grow their interest in this emerging medical application-oriented field. Also, i try to provide them an integrated academic and corporate approach through the teaching, and stress on the importance of this approach for progressing multidisciplinary research, development, commercialization and clinical translation.

The positive student feedbacks and comments are further helping me to make the course more exciting. In fact, last year we had focused on developing the scientific writing skills of the students with multiple class assignments and presentations. They are also going to get the opportunity to visit multiple relevant research labs. Additionally, the new flip classes of LEEP2 have immensely helped me implement the concept of active learning within students, making it more interesting.

b) Undergraduate Student Advising: I believe teaching and research activities should be balanced, and complement each other when possible. This is why apart from guiding students in their course curriculum, I encourage them to pursue research of their choice in our faculty laboratories. This will allow them to implement the fundamentals, learnt in the classroom, to laboratory research. This combination of education and research will be very effective to enhance undergraduate learning, skills and interest in the field. In fact, from my recent experiences as Instructor for high-school students (Engineering Summer camps and Duke-TIP Program for talented high-school students), I believe this also holds true for them too.

c) Graduate Advising and Mentoring: I believe every graduate student are different, but if we give them

the space and freedom to think independently they can do great things. As an advisor my job is to make sure that they are focused and are on track to complete their degrees successfully on time. This has helped me achieve the most important thing – to make sure they enjoy their research work, work as a team and take good care of their own new lab. This has helped us collaborate and publish multiple articles in the first one year, as we are slowly developing our new laboratory research facilities in LEEP2. This has been further supplemented by my postdoctoral fellow's efforts to work together with me on guiding graduate and undergraduate students in experimental designs, help with grant writing, performing experiments and publishing papers.

As undergraduate and graduate student advisor and mentor, I try to provide constant advice to help the students develop appropriate programs of study. In parallel with the continuous development of professional services, I anticipate taking more responsibility for departmental and institutional needs. I recognize the importance of university, professional, and community service. Along this direction, I have emphasized involvement in program committees, chairing of technical conferences (national and international), role as grant reviewer from different funding agencies, role as editor and reviewer of multiple high impact journals (as detailed in my publication list), with the expectation to develop increasing visibility and responsibility.

Teaching Interests

  • Biomedical Engineering
  • Regenerative Medicine
  • Tissue engineering
  • Biomaterials
  • Biotechnology
  • Molecular Bioengineering, Thermodynamics

Research

Since joining KU in August 2014, it has been an inspiring period of my academic career to experience and develop an integrated program of research, teaching, and professional service. Upon joining, I have set the goals for achieving excellence in teaching, research, service and proper balance among them. Currently, I am supervising two Ph.D. students and one Masters student working is the area of Nanomaterials, Biotherapeutics and Regenerative Medicine (BioIntel Research Group, available at www.biointel-arghyapaul.ku.edu). So far, one Ph.D. student has successfully completed the Qualifying exam in a timely manner. Apart from that I am mentoring four undergraduate students in my laboratory research works. In the following sections, I will provide details of my current and future research directions, teaching philosophy, and the synergies between these efforts.

Current and Future Research: My research related activities at KU are multifold. They consist of three major components: (i) research activities in the form of individual and collaborative projects and grant solicitation; (ii) promoting a new generation of qualified chemical and bioengineers in my field of expertise by mentoring and supporting students and postdocs (iii) efforts to build a top-class Nano-Biotherapeutics and Regenerative Medicine Research Group at KU. Towards that direction, I am currently directing "Bio-Intel" Research Laboratory at KU. Here we intend to develop new class of biofunctional nanomaterials for drug and gene delivery, regenerative tissue engineering and advanced biomedical devices for translational research. Specifically, the lab aims to (i) innovate at the biomolecular and cellular level to develop biomedical technologies, (ii) exploit the stem cell-material interactions and mechanistic pathways, and (iii) discover therapeutic and diagnostic strategies which can be translated to point-of-care patient applications.To enable us work towards this goal, I have obtained 220K as single-investigator research project grant from NIH/NIGMS Institutional Development Award (IDeA), CMADP and 8K from NFGRF (KUCR). Our research at KU has resulted in total 10 accepted/submitted publications, 6 presentations including several invited seminars and talks at conferences/meetings. Most of the papers and presentations include undergraduate, graduate and collaborator co-authors (detailed in CV).

Goals for Next Five Years: To establish my research team over the next five years, I intend to develop a highly multidisciplinary research team in association with several leading and emerging researchers in the field of bioengineering and medicine. While I am already collaborating with R Ahmed (U Cincinnati), A Gaharwar (TAMU), A Singh (Cornell), D Shum-Tim (McGill), A Hasan (Univ Qatar) and B Dawn, C Quint, R Johnson (KUMC) for my current research, I expect to initiate new collaborative projects, submit multiple collaborative grants in the areas of biomaterials, cardiac tissue engineering and gene therapy with other faculty members within and outside the university.

Research Interests

  • BioTherapeutic Devices
  • Biomimetic Nanomaterials
  • Regenerative Tissue Engineering
  • Stem Cell/Material Interface
  • "Tissue-on-a-Chip"
  • Microfabrication
  • Biomolecular & Genetic Engineering

Selected Publications

Shao, W. Paul, A. & Prakash, S. (n.d.). Nanotubes as an emerging tool for biomedical applications. In T. M. S. Chang (Ed.), Selected Topics in Nanomedicine. Imperial College Press.

Rodes, L. Khan, A. Paul, A. Coussa-Charley, M. Marinescu, D. Tomaro-Duchesneau, C. Shao, W. Kahouli, I. & Prakash, S. (in press). Effect of probiotics Lactobacillus and Bifidobacterium on gut derived- lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. Food Microbiology and Biotechnology.

Basu, S. (2018). Nanomaterials for Bone Repair. In . (Ed.), Top 25 Commentaries on Surgery. Publisher: Avid Science Editor: Jinxi Wang. Avid Science .

DeVepo, M. (2018). Comparison of Candidate Cell Populations for the Recellularization of Decellularized Heart Valves. Cell Mol Bioeng.

Modaresi, S. (2018). Deciphering the role of substrate stiffness in enhancing the internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers. Nanoscale.

Pacelli, S. (2018). Design of a Cytocompatible Hydrogel Coating to Modulate Properties of Ceramic-Based Scaffolds for Bone Repair. Cell Mol Bioeng.

Pacelli, S. (2018). Fabrication of a Double-Cross-Linked Interpenetrating Polymeric Network (IPN) Hydrogel Surface Modified with Polydopamine to Modulate the Osteogenic Differentiation of Adipose-Derived Stem Cells. ACS Applied Materials & Interfaces.

Basu, S. (2018). Harnessing the Non-Covalent Interactions of DNA Backbone with 2D Silicate Nanodisks to Fabricate Injectable Therapeutic Hydrogels. ACS Nano.

Chakravarti, A. (2018). Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis. Cell Mol Bioeng.

Waters, R. (2018). Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomaterialia.

Murali, D. G. Kshirsagar, K. Hasan, A. & Paul, A. (in press). Harnessing the potential of stem cells from different sources for tissue engineering. In A. Hasan (Ed.), Tissue Engineering for Artificial Organs. Wiley Publisher .

Maloney, R. Mondal, A. Mehdi, I. Ahmed, R. & Paul, A. (2016). Functional Nucleic Acid Incorporated Materials for Cell Therapy and Tissue Engineering. In Q. Wang (Ed.), Fundamental Principles of Smart Materials for Tissue Engineering. DOI:10.1039/9781782626756

Whitlow, J. Paul, A. & Polini, A. (2016). Introduction to Bioactive Materials: Definitions and Application in Tissue Engineering and Regeneration Therapy. In J. Marchi (Ed.), Bioglasses: from bone regeneration to cancer treatment. Springer Publisher.

Waters, R. Maloney, R. Ranganath, S. H., Hsieh, H. & Paul, A. (2016). Nano-and Microscale Delivery Systems for Cardiovascular Therapy. In . (Ed.), Microscale Technologies for Cell Engineering (pp. 269–289). Springer International Publishing.

Paul, A. Al Kindi, H. Medhi, R. Manoharan, V. Prakash, S. & Shum-Tim, D. (2016). Nanomaterials and cardiovascular toxicity. In M. Sundaram Ramachandran (Ed.), Heart and Toxin. Elsevier Publisher.

A., P. V., M. & D., K. (2016). Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 4(20), 3544-3554. DOI:10.1039/C5TB02745D

Pacelli, S. Manoharan, V. Desalvo, A. Lomis, N. Jodha, K. S., Prakash, S. & Paul, A. (2016). Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy. Journal of Materials Chemistry B.

Hasan, A. Waters, R. Roula, B. Dana, R. Yara, S. Alexandre, T. & Paul, A. (2016). Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromolecular bioscience, 16(7), 958-77. DOI:10.1002/mabi.201500396

J., W. S., P. & A., P. (2016). Polymeric nanohybrids as a new class of therapeutic biotransporters. Macromol Chemistry and Physics, 217(11), 1245–1259. DOI:10.1002/macp.201500464

Paul, A. Manoharan, V. Krafft, D. Assmann, A. Uquillas, J. A., Shin, S. R., Hasan, A. Hussain, M. A., Memic, A. Gaharwar, A. K., & Khademhosseini, A. (2016). Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of materials chemistry. B, Materials for biology and medicine, 4(20), 3544-3554. DOI:10.1039/C5TB02745D

Waters, R. Pacelli, S. Maloney, R. Medhi, I. Ahmed, R. P., & Paul, A. (2016). Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale, 8(14), 7371-6. DOI:10.1039/c5nr07806g

Viana, J. F., Carrijo, J. Freitas, C. G., Paul, A. Alcaraz, J. Lacorte, C. C., Migliolo, L. Andrade, C. A., Falcao, R. & Santos, N. C. (2015). Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale, 7(14), 6238–6246.

Hasan, A. Khattab, A. Islam, M. A., Hweij, K. A., Zeitouny, J. Waters, R. Sayegh, M. Hossain, M. M., & Paul, A. (2015). Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advanced Science, 2(11).

Paul, A. (2015). Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine, 10(9), 1371–1374.

Hasan, A. Paul, A. Memic, A. & Khademhosseini, A. (2015). A multilayered microfluidic blood vessel-like structure. Biomedical microdevices, 17(5), 88. DOI:10.1007/s10544-015-9993-2

Alrefai, M. T., Murali, D. Paul, A. Ridwan, K. M., Connell, J. M., & Shum-Tim, D. (2015). Cardiac tissue engineering and regeneration using cell-based therapy. Stem cells and cloning : advances and applications, 8, 81-101. DOI:10.2147/SCCAA.S54204

Al Kindi, H. Paul, A. You, Z. Nepotchatykh, O. Schwertani, A. Prakash, S. & Shum-Tim, D. (2014). Sustained release of milrinone delivered via microparticles in a rodent model of myocardial infarction. The Journal of thoracic and cardiovascular surgery, 148(5), 2316-23. DOI:10.1016/j.jtcvs.2014.07.033

Gaharwar, A. K., Avery, R. K., Assmann, A. Paul, A. McKinley, G. H., Khademhosseini, A. & Olsen, B. D. (2014). Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS nano. DOI:10.1021/nn503719n

Paul, A. Hasan, A. Kindi, H. A., Gaharwar, A. K., Rao, V. T., Nikkhah, M. Shin, S. R., Krafft, D. Dokmeci, M. R., Shum-Tim, D. & Khademhosseini, A. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS nano, 8(8), 8050-8062. DOI:10.1021/nn5020787

Hasan, A. Paul, A. Vrana, N. E., Zhao, X. Memic, A. Hwang, Y. S., Dokmeci, M. R., & Khademhosseini, A. (2014). Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 35(26), 7308-25. DOI:10.1016/j.biomaterials.2014.04.091

Hasan, A. Ragaert, K. Swieszkowski, W. Selimović, S. Paul, A. Camci-Unal, G. Mofrad, M. R., & Khademhosseini, A. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of biomechanics, 47(9), 1949-63. DOI:10.1016/j.jbiomech.2013.09.023

Paul, A. Hasan, A. Rodes, L. Sangaralingam, M. & Prakash, S. (2014). Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges. Advanced drug delivery reviews, 71, 115-130. DOI:10.1016/j.addr.2014.01.004

Hsieh, H. Y., Camci-Unal, G. Huang, T. W., Liao, R. Chen, T. J., Paul, A. Tseng, F. G., & Khademhosseini, A. (2014). Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab on a chip, 14(3), 482-493. DOI:10.1039/c3lc50884f

Hasan, A. Memic, A. Annabi, N. Hossain, M. Paul, A. Dokmeci, M. R., Dehghani, F. & Khademhosseini, A. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. Acta biomaterialia, 10(1), 11-25. DOI:10.1016/j.actbio.2013.08.022

Rodes, L. Tomaro-Duchesneau, C. Saha, S. Paul, A. Malhotra, M. Marinescu, D. Shao, W. Kahouli, I. & Prakash, S. (2014). Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-L-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model. Journal of microencapsulation, 31(3), 230-238. DOI:10.3109/02652048.2013.834990

Hasan, A. Nurunnabi, M. Morshed, M. Paul, A. Polini, A. Kuila, T. Al Hariri, M. Lee, Y. K., & Jaffa, A. A. (2014). Recent advances in application of biosensors in tissue engineering. BioMed research international, 2014, 307519. DOI:10.1155/2014/307519

Paul, A. Shum-Tim, D. & Prakash, S. (2013). Angiogenic Nanodelivery Systems for Myocardial Therapy. In R. L. Kao (Ed.), Cellular Cardiomyoplasty: Methods and Protocols (Vol. 1036, pp. 137-49). New York, USA: Springer.

Paul, A. (2013). Designing Biomedical Stents for Vascular Therapy: Current Perspectives and Future Promises. In A. Daskalaki (Ed.), Medical Advancements in Aging and Regenerative Technologies: Clinical Tools and Applications. IGI Global Publisher.

Al Kindi, H. Paul, A. Prakash, S. & Shum-Tim, D. (2013). Nanotechnology for Cardiovascular Therapy: Current Perspective and Future Outlook. In E. H. Bennington (Ed.), Horizons in World Cardiovascular Research (Vol. 5). Nova Science Publishers, Inc.

Huu, A. Paul, A. Prakash, S. & Shum-Tim, D. (2013). Route of Delivery, Cell Retention and Efficiency of Polymeric Microcapsules in Cellular Cardiomyoplasty. In R. L. Kao (Ed.), Cellular Cardiomyoplasty: Methods and Protocols (Vol. 1036, pp. 121-35). New York, USA: Springer.

Fakhoury, M. (2013). Anti-inflammatory potential of artificial microcapsules containing thalidomide for use in treating Crohn’s disease. Journal of Drug Delivery and Therapeutics, 3(5), 11–17.

Paul, A. Elias, C. Shum-Tim, D. & Prakash, S. (2013). Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Scientific Reports - Nature, 3, 02366. DOI:10.1038

Shao, W. Paul, A. Rodes, L. & Prakash, S. (2013). Carbon Nanotube Lipid Drug Approach for Targeted Delivery of a Chemotherapy Drug in a Human Breast Cancer Xenograft Animal Model. Biomaterials, S0142-9612(13), 01090-9.

Hasan, A. Memic, A. Paul, A. Domkmeci, M. & Khademhosseini, A. (2013). Electrospun Scaffolds for Tissue Engineering of Vascular Grafts. Acta Biomaterialia, S1742-7061(13), 00414-5.

Tamayol, A. Akbari, M. Annabi, N. Paul, A. Khademhosseini, A. & Juncker, D. (2013). Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities. Biotechnology Advances. DOI:10.1016/j.biotechadv.2012.11.007

Paul, A. Pisanoa, V. Polini, A. Dokmeci, M. R., & Khademhosseini, A. (2013). Research Highlights. Fabrication of nanofibres using bioinspired microfluidic spinnning strategy. Lab on a Chip, 13(20), 3989-92.

Paul, A. Srivastava, S. Chen, G. Shum-Tim, D. & Prakash, S. (2013). Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. Cell biochemistry and biophysics, 67(2), 263-73. DOI:10.1007/s12013-011-9323-0

Paul, A. Srivastava, S. Chen, G. Shum-Tim, D. & Prakash, S. (2013). Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models: comparison with bone marrow stem cells. Cell biochemistry and biophysics, 67(2), 263-73. DOI:10.1007/s12013-011-9323-0

Tamayol, A. Akbari, M. Annabi, N. Paul, A. Khademhosseini, A. & Juncker, D. (2013). Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology advances, 31(5), 669-87. DOI:10.1016/j.biotechadv.2012.11.007

Rodes, L. Coussa-Charley, M. Marinescu, D. Paul, A. Fakhoury, M. Abbasi, S. Khan, A. Tomaro-Duchesneau, C. & Prakash, S. (2013). Design of a novel gut bacterial adhesion model for probiotic applications. Artificial cells, nanomedicine, and biotechnology, 41(2), 116-24. DOI:10.3109/10731199.2012.712047

Rodes, L. Coussa-Charley, M. Marinescu, D. Paul, A. Fakhoury, M. Abbasi, S. Khan, A. Tomaro-Duchesneau, C. & Prakash, S. (2013). Design of a novel gut bacterial adhesion model for probiotic applications. Artificial cells, nanomedicine, and biotechnology, 41(2), 116-24. DOI:10.3109/10731199.2012.712047

Rodes, L. Khan, A. Paul, A. Coussa-Charley, M. Marinescu, D. Tomaro-Duchesneau, C. Shao, W. Kahouli, I. & Prakash, S. (2013). Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. Journal of microbiology and biotechnology, 23(4), 518-26.

Rodes, L. Khan, A. Paul, A. Coussa-Charley, M. Marinescu, D. Tomaro-Duchesneau, C. Shao, W. Kahouli, I. & Prakash, S. (2013). Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. Journal of microbiology and biotechnology, 23(4), 518-26.

Le Huu, A. Paul, A. Xu, L. Prakash, S. & Shum-Tim, D. (2013). Recent advancements in tissue engineering for stem cell-based cardiac therapies. Therapeutic delivery, 4(4), 503-16. DOI:10.4155/tde.13.13

Le Huu, A. Paul, A. Xu, L. Prakash, S. & Shum-Tim, D. (2013). Recent advancements in tissue engineering for stem cell-based cardiac therapies. Therapeutic delivery, 4(4), 503-16. DOI:10.4155/tde.13.13

Paul, A. Shum-Tim, D. & Prakash, S. (2013). Angiogenic nanodelivery systems for myocardial therapy. Methods in molecular biology (Clifton, N.J.), 1036, 137-49. DOI:10.1007/978-1-62703-511-8_12

Paul, A. Elias, C. B., Shum-Tim, D. & Prakash, S. (2013). Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Scientific reports, 3, 2366. DOI:10.1038/srep02366

Bhathena, J. Martoni, C. Kulamarva, A. Tomaro-Duchesneau, C. Malhotra, M. Paul, A. Urbanska, A. M., & Prakash, S. (2013). Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian hamsters. PloS one, 8(3), e58394. DOI:10.1371/journal.pone.0058394

Bhathena, J. Martoni, C. Kulamarva, A. Tomaro-Duchesneau, C. Malhotra, M. Paul, A. Urbanska, A. M., & Prakash, S. (2013). Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian hamsters. PloS one, 8(3), e58394. DOI:10.1371/journal.pone.0058394

Huu, A. L., Paul, A. Prakash, S. & Shum-Tim, D. (2013). Route of delivery, cell retention, and efficiency of polymeric microcapsules in cellular cardiomyoplasty. Methods in molecular biology (Clifton, N.J.), 1036, 121-35. DOI:10.1007/978-1-62703-511-8_11

Shao, W. Paul, A. & Prakash, S. (2012). Carbon nanotubes in medicine: potentials and limitations. In . (Ed.), Recent Progress in Carbon Nanotube Research. InTech Publisher.

Paul, A. Shao, W. Burdon, T. Shum-Tim, D. & Prakash, S. (2012). Dendrimer Nanoparticles and Their Applications in Biomedicine. In A. Tiwari & A. Tiwari (Eds.), Nanomaterials in Drug Delivery, Imaging and Tissue Engineering (pp. 339-362). WILEY- Scrivener Publishing LLC.

Bhathena, J. Tomaro-Duchesneau, C. Martoni, C. Malhotra, M. Kulamarva, A. Urbanska, A. Paul, A. & Prakash, S. (2012). Effect of Orally Administered Microencapsulated FA-Producing L. fermentum on Markers of Metabolic Syndrome: An In Vivo Analysis. J Diabetes Metab, S2:009. DOI:10.4172/2155-6156.S2-009

Shao, W. Paul, A. Abbasi, S. Kamen, A. & Prakash, S. (2012). Efficient siRNA delivery using viral like nanoparticles for breast cancer therapy. International Journal of Nanomedicine, 7, 1575-86.

Paul, A. Chen, G. Khan, A. Shum-Tim, D. & Prakash, S. (2012). Genipin-crosslinked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infarcted rat heart fibrosis and cardiac dysfunction. Cell Transplantation.

Binsalamah, Z. Paul, A. Prakash, S. & Shum-Tim, D. (2012). Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther, 10(6), 805-15.

Paul, A. Shao, W. Shum-Tim, D. & Prakash, S. (2012). PAMAM Dendrimer-Baculovirus Nanocomplex for Microencapsulated Adipose Stem Cell-Gene Therapy: In Vitro and in Vivo Functional Assessment. ACS Molecular Pharmaceutics, 9(9), 2479-88.

Paul, A. Shao, W. Shum-Tim, D. & Prakash, S. (2012). The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles. Biomaterials, 33(30), 7655-64. DOI:10.1016/j.biomaterials.2012.06.096

Paul, A. Shao, W. Shum-Tim, D. & Prakash, S. (2012). The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles. Biomaterials, 33(30), 7655-64. DOI:10.1016/j.biomaterials.2012.06.096

Paul, A. Shao, W. Abbasi, S. Shum-Tim, D. & Prakash, S. (2012). PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment. Molecular pharmaceutics, 9(9), 2479-88. DOI:10.1021/mp3000502

Binsalamah, Z. M., Paul, A. Prakash, S. & Shum-Tim, D. (2012). Nanomedicine in cardiovascular therapy: recent advancements. Expert review of cardiovascular therapy, 10(6), 805-15. DOI:10.1586/erc.12.41

Shao, W. Paul, A. Abbasi, S. Chahal, P. S., Mena, J. A., Montes, J. Kamen, A. & Prakash, S. (2012). A novel polyethyleneimine-coated adeno-associated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: preparation and in vitro analysis. International journal of nanomedicine, 7, 1575-86. DOI:10.2147/IJN.S26891

Shao, W. Paul, A. Abbasi, S. Chahal, P. S., Mena, J. A., Montes, J. Kamen, A. & Prakash, S. (2012). A novel polyethyleneimine-coated adeno-associated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: preparation and in vitro analysis. International journal of nanomedicine, 7, 1575-86. DOI:10.2147/IJN.S26891

Paul, A. Nayan, M. Khan, A. A., Shum-Tim, D. & Prakash, S. (2012). Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. International journal of nanomedicine, 7, 663-82. DOI:10.2147/IJN.S26882

Paul, A. Nayan, M. Khan, A. A., Shum-Tim, D. & Prakash, S. (2012). Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. International journal of nanomedicine, 7, 663-82. DOI:10.2147/IJN.S26882

Abbasi, S. Paul, A. Shao, W. & Prakash, S. (2012). Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment. Journal of drug delivery, 2012, 686108. DOI:10.1155/2012/686108

Abbasi, S. Paul, A. Shao, W. & Prakash, S. (2012). Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment. Journal of drug delivery, 2012, 686108. DOI:10.1155/2012/686108

Paul, A. Chen, G. Khan, A. Rao, V. T., Shum-Tim, D. & Prakash, S. (2012). Genipin-cross-linked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infarcted rat heart fibrosis and cardiac dysfunction. Cell transplantation, 21(12), 2735-51. DOI:10.3727/096368912X637497

Paul, A. Chen, G. Khan, A. Rao, V. T., Shum-Tim, D. & Prakash, S. (2012). Genipin-cross-linked microencapsulated human adipose stem cells augment transplant retention resulting in attenuation of chronically infarcted rat heart fibrosis and cardiac dysfunction. Cell transplantation, 21(12), 2735-51. DOI:10.3727/096368912X637497

Paul, A. Bhathena, J. & Prakash, S. (2011). Stem cell bioengineering and microencapsulation: current perspective and future potentials. In . Prakash & . Shum-Tim (Eds.), Stem Cell Bioengineering and Tissue Engineering Microenvironment (pp. 287-313). US: World Scientific Publishing Co. Ltd.

Kahn, A. A., Paul, A. Abbasi, S. & Prakash, S. (2011). Nanoparticles co-encapsulating hVEGF and hAng1 can induce mititic and antiapoptotic effect on vascular endothelial cells. In NSTI Nanotech 2011 Chapter 3 (Vol. 3, pp. 183-185).

Abbasi, S. Paul, A. Kahn, A. A., & Prakash, S. (2011). siRNA delivery using biodegradable nanoparticles for breast cancer therapy. In NSTI Nanotech 2011 Chapter 1 (Vol. 1, pp. 74-76).

Burdon, T. Paul, A. Noiseux, N. Prakash, S. & Shum-Tim, D. (2011). Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential. Bone Marrow Research, 207326. DOI:10.1155/2011/207326

Apte, S. Paul, A. Prakash, S. & Shum-Tim, D. (2011). Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future Cardiology, 7(1), 77-79.

Bhathena, J. Kulamarva, A. Martoni, C. Urbanska, A. Malhotra, M. Paul, A. & Prakash, S. (2011). Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2011(4), 195-203.

Abbasia, S. Paul, A. & Prakash, S. (2011). Investigation of siRNA-loaded polyethyleniminine-coated human serum albumin nanoparticle complexes for the treatment of breast cancer. Cell Biochemistry and Biophysics, 61(2), 277-87.

Khan, A. Paul, A. Abbasi, S. & Prakash, S. (2011). Nanoparticles co-encapsulating hVEGF and hAng-1 can induce mitotic and antiapoptotic effect on vascular endothelial cells. International Journal of Nanomedicine, 6, 1069-81.

Nayan, M. Paul, A. Chen, G. Chiu, R. Prakash, S. & Shum-Tim, D. (2011). Superior therapeutic potential of young bone marrow mesenchymal stem cells by direct intramyocardial delivery in aged recipients with acute myocardial infarction: in vitro and in vivo investigation. Journal of Tissue Engineering, 2011, 741213.

Rodes, L. Paul, A. Coussa-Charley, M. Al-Salami, H. Tomaro-Duchesneau, C. Fakhoury, M. & Prakash, S. (2011). Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia. Artificial cells, blood substitutes, and immobilization biotechnology, 39(6), 351-6. DOI:10.3109/10731199.2011.622280

Paul, A. Binsalamah, Z. M., Khan, A. A., Abbasia, S. Elias, C. B., Shum-Tim, D. & Prakash, S. (2011). A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials, 32(32), 8304-18. DOI:10.1016/j.biomaterials.2011.07.042

Abbasi, S. Paul, A. & Prakash, S. (2011). Investigation of siRNA-loaded polyethylenimine-coated human serum albumin nanoparticle complexes for the treatment of breast cancer. Cell biochemistry and biophysics, 61(2), 277-87. DOI:10.1007/s12013-011-9201-9

Abbasi, S. Paul, A. & Prakash, S. (2011). Investigation of siRNA-loaded polyethylenimine-coated human serum albumin nanoparticle complexes for the treatment of breast cancer. Cell biochemistry and biophysics, 61(2), 277-87. DOI:10.1007/s12013-011-9201-9

Paul, A. Cantor, A. Shum-Tim, D. & Prakash, S. (2011). Superior cell delivery features of genipin crosslinked polymeric microcapsules: preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Molecular biotechnology, 48(2), 116-27. DOI:10.1007/s12033-010-9352-8

Burdon, T. J., Paul, A. Noiseux, N. Prakash, S. & Shum-Tim, D. (2011). Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone marrow research, 2011, 207326. DOI:10.1155/2011/207326

Apte, S. S., Paul, A. Prakash, S. & Shum-Tim, D. (2011). Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future cardiology, 7(1), 77-97. DOI:10.2217/fca.10.120

Bhathena, J. Kulamarva, A. Martoni, C. Urbanska, A. M., Malhotra, M. Paul, A. & Prakash, S. (2011). Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes, metabolic syndrome and obesity : targets and therapy, 4, 195-203. DOI:10.2147/DMSO.S18435

Binsalamah, Z. M., Paul, A. Khan, A. A., Prakash, S. & Shum-Tim, D. (2011). Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. International journal of nanomedicine, 6, 2667-78. DOI:10.2147/IJN.S25175

Khan, A. A., Paul, A. Abbasi, S. & Prakash, S. (2011). Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. International journal of nanomedicine, 6, 1069-81. DOI:10.2147/IJN.S15054

Khan, A. A., Paul, A. Abbasi, S. & Prakash, S. (2011). Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. International journal of nanomedicine, 6, 1069-81. DOI:10.2147/IJN.S15054

Nayan, M. Paul, A. Chen, G. Chiu, R. C., Prakash, S. & Shum-Tim, D. (2011). Superior therapeutic potential of young bone marrow mesenchymal stem cells by direct intramyocardial delivery in aged recipients with acute myocardial infarction: in vitro and in vivo investigation. Journal of tissue engineering, 2011, 741213. DOI:10.4061/2011/741213

Paul, A. Khan, A. Shum-Tim, D. & Prakash, S. (2010). BacMam virus transduced cardiomyoblasts can be used for myocardial transplantation using AP-PEG-A microcapsules: molecular cloning, preparation and in vitro analysis. Journal of Biomedicine and Biotechnology, 2010, 858094. DOI:10.1155/2010/858094

Paul, A. & Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion pathway for cell entry and transgene delivery. Future Virology, 5(5), 533-537.

Paul, A. Shum-Tim, D. & Prakash, S. (2010). Investigation on PEG Integrated Alginate–Chitosan Microcapsules for Myocardial Therapy Using Marrow Stem Cells Genetically Modified by Recombinant Baculovirus. Cardiovascular Engineering and Technology, 1(2), 154-164. DOI:10.1007/s13239-010-0017-3

Paul, A. Abbasi, S. Shum-Tim, D. & Prakash, S. (2010). Nano- and Biotechnological Approaches in Current and Future Generation of Cardiovascular Stents. Current Nanoscience, 6(5), 469-478.

Prakash, S. Khan, A. & Paul, A. (2010). Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert Opinion in Biological Therapy,(12), 1649-61.

Paul, A. Elhayek, E. Shum-Tim, D. & Prakash, S. (2010). Recent Advancements in Pharmacological Stent Therapy Using Polymeric Materials: Opportunities and Challenges. Current Drug Delivery, 7(3), 216-224.

Paul, A. Kulamarva, A. Malhotra, M. Elias, C. & Prakash, S. (2010). Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Molecular Biotechnology, 45(2), 129-39.

Paul, A. Cantor, A. Shum-Tim, D. & Prakash, S. (2010). Superior Cell Delivery Features of Genipin Crosslinked Polymeric Microcapsules: Preparation, In Vitro Characterization and Pro-Angiogenic Applications Using Human Adipose Stem Cells. DOI:10.1007/s12033-010-9352-8 Molecular Biotechnology

Urbanska, A. Paul, A. Bhathena, J. & Prakash, S. (2010). Suppression of Tumorigenesis: Modulation of Inflammatory Cytokines by Oral Administration of Microencapsulated Probiotic Yogurt Formulation. International Journal of Inflammation, 2010. DOI:10.4061/2010/894972

Prakash, S. Khan, A. & Paul, A. (2010). Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert opinion on biological therapy, 10(12), 1649-61. DOI:10.1517/14712598.2010.528387

Urbanska, A. M., Paul, A. Bhathena, J. & Prakash, S. (2010). Suppression of tumorigenesis: modulation of inflammatory cytokines by oral administration of microencapsulated probiotic yogurt formulation. International journal of inflammation, 2010, 894972. DOI:10.4061/2010/894972

Paul, A. ElHayek, E. Shum-Tim, D. & Prakash, S. (2010). Recent Advancements in Pharmacological Stent Therapy Using Polymeric Materials: Opportunities and Challenges. Current drug delivery, 7(3), 216-24.

Paul, A. Jardin, B. A., Kulamarva, A. Malhotra, M. Elias, C. B., & Prakash, S. (2010). Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Molecular biotechnology, 45(2), 129-39. DOI:10.1007/s12033-010-9248-7

Paul, A. Khan, A. A., Shum-Tim, D. & Prakash, S. (2010). BacMam virus transduced cardiomyoblasts can be used for myocardial transplantation using AP-PEG-A microcapsules: molecular cloning, preparation, and in vitro analysis. Journal of biomedicine & biotechnology, 2010, 858094. DOI:10.1155/2010/858094

Paul, A. Ge, Y. Prakash, S. & Shum-Tim, D. (2009). Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. J Regenerative Medicine , 4(5), 733-745.

Malhotra, M. Kulamarva, A. Sebak, S. Paul, A. Bhathena, J. Mirzaei, M. & Prakash, S. (2009). Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Development and Industrial Pharmacy, 35(6), 719-726.

Paul, A. Ge, Y. Prakash, S. & Shum-Tim, D. (2009). Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regenerative medicine, 4(5), 733-45. DOI:10.2217/rme.09.43

Malhotra, M. Kulamarva, A. Sebak, S. Paul, A. Bhathena, J. Mirzaei, M. & Prakash, S. (2009). Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug development and industrial pharmacy, 35(6), 719-26. DOI:10.1080/03639040802526789

Paul, A. Hamoudeh, M. Malhotra, M. Elias, C. Shum-Tim, D. & Prakash, S. (2008). Viral vector based gene therapy for angiogenesis of damaged cardiac tissues: a novel approach. The Canadian Journal of Cardiology, 24 Supplement SE.

Selected Presentations

Paul, A. . (09/30/2014). Invited Talk, Midwest Conference on Cell Therapy and Regenerative Medicine, Kansas City. Midwest Conference on Cell Therapy and Regenerative Medicine. Kansas City

Selected Grants

Selected Awards & Honors

Fred Kurata Memorial Professorship in Chemical Engineering
University of Kansas
2017 - 2020

Young Innovator Award
Biomedical Engineering Society (BMES)
2018 - Present

Education

  • Postdoc:   Harvard-MIT Division of Health Sciences and Technology, WYSS Institute for Biologically Inspired Engineering, Harvard University, Boston.
  • PhD:         Biomedical Engineering, McGill University, Montreal.
  • MS:           Biotechnology, McGill University, Montreal​
  • BTech:      Biotechnology, WBUT, Kolkata.      

Research Interests

  • Biotherapeutics
  • Engineering Biomimetic Nanomaterials
  • Regenerative Micro-Tissue Engineering
  • Stem Cells & Gene Therapy
  • Bioengineered Medical Devices

 

Our BioIntel Research Group 

We develop new class of biofunctional materials, hybrid tissue regeneration matrices and biotransporters using micro and nano-scale technologies for diverse medical applications. Specifically, the lab aims to (1) innovate at the biomolecular and cellular level to develop biomedical technologies, (2) exploit the stem cell-material interactions and mechanistic pathways, and (3) discover therapeutic and diagnostic strategies which can be translated to point-of-care patient applications.

Publications

 


Upcoming Events and Deadlines

Sunday, April 14th - GEA5K | Starts at 8am | 2101 Constant Ave 

Friday, May 3rd - Paul Willhite's Retirement Celebration | 6-8pm | Beren Petroleum Conference Center

Saturday, May 4th - Annual Departmental Awards Banquet | 5:30 - 8:30pm | KU Memorial Union's Ballroom

Saturday, May 18th - School of Engineering Recognition Ceremony | starts at 8am | Allen Fieldhouse


CPE Weekly Graduate Seminar Schedule 

For School of Engineering Events, Click HERE.

Looking for Graduate Workshops and Events? Click HERE for Engineering and HERE for the COGA calendar

University Events can be found HERE