Prof. Aaron M. Scurto, PhD

School of Engineering - Chemical & Petroleum Engineering
Associate Professor
Primary office:
785-864-4947
Learned Hall
Room 4132
University of Kansas
1530 West 15th Street
Lawrence, KS 66045
Second office:
Learned Hall



Summary

Education

Ph.D., Chemical Engineering, University of Notre Dame

B.ChE., Chemical Engineering, University of Delaware

Research Interests

  • Sustainable chemistry and engineering, alternative solvents, phase equilibrium thermodynamics, biomass processing, cellulose, homogeneous catalysis, organometallic catalysis, enzyme catalysis, fermentation separations,

Selected Publications

Shiflett, M. B., & Scurto, A. M. (2017). Ionic Liquids: Current State and Future Directions. In . (Ed.), Ionic Liquids: Current State and Future Directions (Vol. 1250, pp. 1-13). American Chemical Society. DOI:10.1021/bk-2017-1250.ch001 10.1021/bk-2017-1250.ch001 http://dx.doi.org/10.1021/bk-2017-1250.ch001

Shiflett, M. B., & Scurto, A. M. (2017). Preface. In . (Ed.), Ionic Liquids: Current State and Future Directions (Vol. 1250, pp. ix-xi). American Chemical Society. DOI:10.1021/bk-2017-1250.pr001 10.1021/bk-2017-1250.pr001 http://dx.doi.org/10.1021/bk-2017-1250.pr001

Minnick, D. L., Flores, R. A., & Scurto, A. M. (2017). Viscosity and Rheology of Ionic Liquid Mixtures Containing Cellulose and Cosolvents for Advanced Processing. In . (Ed.), Ionic Liquids: Current State and Future Directions (Vol. 1250, pp. 189-208). American Chemical Society. DOI:10.1021/bk-2017-1250.ch008 10.1021/bk-2017-1250.ch008 http://dx.doi.org/10.1021/bk-2017-1250.ch008

Shiflett, M. B., & Scurto, A. M. (2017). Ionic liquids: Current state and future directions, American Chemical Society. DOI:10.1021/bk-2017-1250.pr001 10.1021/bk-2017-1250.pr001 http://dx.doi.org/10.1021/bk-2017-1250.pr001

Kian, K. & Scurto, A. M. (2017). Heat Transport Properties of CO2-Expanded Liquids: n-Hexane, n-Decane, and n-Tetradecane. Industrial & Engineering Chemistry Research, 56(44), 12822-12832. DOI:10.1021/acs.iecr.7b03513 ://WOS:000415028300042

Minnick, D. L., & Scurto, A. M. (2017). Sustainability of Ionic Liquid Production: Effects of Solvent and Reaction Configuration. Manuscript in Preparation.

Ahosseini, A. Ren, W. Weatherley, L. R., & Scurto, A. M. (2017). Viscosity and self-diffusivity of ionic liquids with compressed hydrofluorocarbons: 1-Hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide and 1,1,1,2-tetrafluoroethane. Fluid Phase Equilibria, 437, 34-42. DOI://doi.org/10.1016/j.fluid.2016.11.022 http://www.sciencedirect.com/science/article/pii/S0378381216305763

Alexandratos, S. D., Biegler, L. T., Broadbelt, L. J., Freeman, B. D., Lee, J. Y., Li, B. G., Morbidelli, M. Ogunnaike, B. A., Ranade, V. V., Savage, P. E., Scurto, A. M., Shen, Y. Q., Walton, K. S., & Xiao, F. S. (2017). Why Wasn't My Manuscript Sent Out for Review? Industrial & Engineering Chemistry Research, 56(25), 7109-7111. DOI:10.1021/acs.iecr.7b02317 ://WOS:000404809500001

Gilbert, W. J., Johnson, S. J., Tsau, J. Liang, J. & Scurto, A. M. (2017). Enzymatic degradation of polyacrylamide in aqueous solution with peroxidase and H2O2
. Journal of Applied Polymer Science, 134(10). DOI:10.1002/app.44560 http://dx.doi.org/10.1002/app.44560

Minnick, D. L., & Scurto, A. M. (2016). Reversible and non-reactive cellulose separations from ionic liquid mixtures with compressed carbon dioxide. Chem. Commun., 51(63), 12649-12652. DOI:10.1039/c5cc03519h http://dx.doi.org/10.1039/c5cc03519h

Minnick, D. L., Flores, R. A., DeStefano, M. R., & Scurto, A. M. (2016). Cellulose Solubility in Ionic Liquid Mixtures: Temperature, Cosolvent, and Antisolvent Effects. The Journal of Physical Chemistry B, 120(32), 7906-7919. DOI:10.1021/acs.jpcb.6b04309 http://dx.doi.org/10.1021/acs.jpcb.6b04309

Nwosu, S. O., Schleicher, J. C., & Scurto, A. M. (2015). Kinetics and polarity effects in the synthesis of the ionic liquid, 1-hexyl-3-methyl-imidazolium bromide, using compressed CO2. J. Supercrit. Fluids, 96, 171-179. DOI:10.1016/j.supflu.2014.10.002

Allen, D. Brennecke, J. F., Scurto, A. M., Stang, P. J., & Fairbrother, D. H. (2015). ACS Virtual Issue on Carbon Capture and Sequestration. Journal of Chemical & Engineering Data, 60(8), 2187-2187. DOI:10.1021/acs.jced.5b00593 http://dx.doi.org/10.1021/acs.jced.5b00593

Minnick, D. L., & Scurto, A. M. (2014). Vapor-liquid equilibrium in the production of the ionic liquid, 1-hexyl-3-methylimidazolium bromide ([HMIm][Br]), in acetone. Fluid Phase Equilib., 365, 11-19. DOI:10.1016/j.fluid.2013.11.030

Dormer, N. H., Gupta, V. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres. Materials Science and Engineering Part C, 33(7), 4343–4351.

Bhamidipati, M. Sridharan, B. Scurto, A. M., & Detamore, M. S. (2013). Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Materials Science and Engineering Part C.

Jeon, J. H., Bhamidipati, M. Sridharan, B. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide. J. Biomed. Mater. Res. B, 101B(2), 330-337.

Bhamidipati, M. Scurto, A. M., & Detamore, M. S. (2013). The Future of Carbon Dioxide for Polymer Processing in Tissue Engineering. Tissue Eng. B, 9(3), 221-232.

Bhamidipati, M. Sridharan, B. Scurto, A. M., & Detamore, M. S. (2013). Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Materials science & engineering. C, Materials for biological applications, 33(8), 4892-9. DOI:10.1016/j.msec.2013.08.010

Dormer, N. H., Gupta, V. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres. Materials Science and Engineering: C, 33(7), 4343-4351. DOI:10.1016/j.msec.2013.06.026 http://dx.doi.org/10.1016/j.msec.2013.06.026

Dormer, N. H., Gupta, V. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres. Materials science & engineering. C, Materials for biological applications, 33(7), 4343-51. DOI:10.1016/j.msec.2013.06.026

Bhamidipati, M. Scurto, A. M., & Detamore, M. S. (2013). The Future of Carbon Dioxide for Polymer Processing in Tissue Engineering. Tissue Engineering Part B: Reviews, 19(3), 221-232. DOI:10.1089/ten.teb.2012.0361 http://dx.doi.org/10.1089/ten.teb.2012.0361

Bhamidipati, M. Scurto, A. M., & Detamore, M. S. (2013). The future of carbon dioxide for polymer processing in tissue engineering. Tissue engineering. Part B, Reviews, 19(3), 221-32. DOI:10.1089/ten.teb.2012.0361

Jeon, J. H., Bhamidipati, M. Sridharan, B. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(2), 330-337. DOI:10.1002/jbm.b.32843 http://dx.doi.org/10.1002/jbm.b.32843

Jeon, J. H., Bhamidipati, M. Sridharan, B. Scurto, A. M., Berkland, C. J., & Detamore, M. S. (2013). Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide. Journal of biomedical materials research. Part B, Applied biomaterials, 101(2), 330-7. DOI:10.1002/jbm.b.32843

Duncan, A. M., Pavlicek, N. Depcik, C. D., Scurto, A. M., & Stagg-Williams, S. M. (2012). High-Pressure Viscosity of Soybean-Oil-Based Biodiesel Blends with Ultra-Low-Sulfur Diesel Fuel. Energy & Fuels, 26(11), 7023-7036.

Ahosseini, A. Weatherley, L. R., & Scurto, A. M. (2011). Viscosity and Diffusivity for the Ionic Liquid, 1-Hexyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)amide with 1-Octene. J. Chem. Eng. Data , 56(10), 3715–3721.

McLeese, S. E., Eslick, J. C., Hoffmann, N. J., Scurto, A. M., & Camarda, K. V. (2010). Design of ionic liquids via computational molecular design. Comp. & Chem. Eng, 34(9), 1476-1480.

Ren, W. Sensenich, B. & Scurto, A. M. (2010). High-Pressure Phase Equilibria of Carbon Dioxide (CO2) + n-Alkyl-Imidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids. J. Chem. Thermodyn, 42(3), 305-311. DOI:10.1016/j.jct.2009.08.018

Duncan, A. Ahosseini, A. McHenry, R. Depcik, C. D., Williams, S. M., & Scurto, A. M. (2010). High-Pressure Viscosity of Bio-diesel from Soybean, Canola, and Coconut Oil. Energy & Fuels, 24(10), 5708–5716.

Duncan, A. M., Ahosseini, A. McHenry, R. Depcik, C. D., Stagg-Williams, S. M., & Scurto, A. M. (2010). High-Pressure Viscosity of Biodiesel from Soybean, Canola, and Coconut Oils. Energy Fuels, 24(10), 5708-5716. DOI:10.1021/ef100382f

Singh, M. Sandhu, B. Scurto, A. M., Berkland, C. & Detamore, M. S. (2010). Microsphere-Based Scaffolds for Cartilage Tissue Engineering: Using Sub-critical CO2 as a Sintering Agent. Acta Biomaterialia, 6(1), 137-143. DOI:10.1016/j.actbio.2009.07.042

Ahosseini, A. Sensenich, B. Weatherley, L. R., & Scurto, A. M. (2010). Phase Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide and 1-Octene. J. Chem. Eng. Data, 55(4), 1611–1617. DOI:10.1021/je900697w

Subramaniam, B. Scurto, A. & Tang, S. (2010). Alkylation catalysts comprising binary mixtures of acid and ionic liquid and alkylation of isoparaffin and olefin.(Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 16pp. USA .

Scurto, A. M., Subramaniam, B. & Hutchenson, K. (2009). Gas-Expanded Liquids (GXLs): Fundamentals and Applications (Ch. 1). In K. Hutchenson, A. M. Scurto, & B. Subramaniam (Eds.), Gas Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering (pp. 3-37). Washington, DC: ACS Symposium Series 1006.

Ahosseini, A. Ren, W. & Scurto, A. M. (2009). Hydrogenation in biphasic ionic liquid/CO2 systems (Chap. 11). In K. Hutchenson, A. M. Scurto, & B. Subramaniam (Eds.), Gas Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering (pp. 218-234). Washington, DC: ACS Symposium Series 1006.

Ren, W. Scurto, A. M., Shiflett, M. & Yokozeki, A. (2009). Phase behavior and equilibria of ionic liquids and refrigerants: 1-Ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][Tf2N]) and R-134a (Chap. 6). In K. Hutchenson, A. M. Scurto, & B. Subramaniam (Eds.), Gas Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering (pp. 112-128). Washington, DC: ACS Symposium Series 1006.

Hutchenson, K., Scurto, A. M., & Subramaniam, B. (Eds.). (2009). Gas Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering (K. Hutchenson, A. M. Scurto, & B. Subramaniam, Eds.). Washington, DC: ACS Symposium Series 1006.

Hutchenson, K. W., Scurto, A. M., & Subramaniam, B. (2009). Gas-Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering. (Papers Presented at the 234th American Chemical Society National Meeting held in Boston, MA 19-23 August 2007). [In: ACS Symp. Ser., 2009; 1006], ACS.

Scurto, A. M., Hutchenson, K. & Subramaniam, B. (2009). Gas-expanded liquids: fundamentals and applications. ACS Symp. Ser., 1006(Gas-Expanded Liquids and Near-Critical Media), 3-37. DOI:10.1021/bk-2009-1006.ch001

Ren, W. & Scurto, A. M. (2009). Global Phase Behavior of Imidazolium Ionic Liquids and Compressed 1,1,1,2-Tetrafluoroethane (R-134a). AIChE J, 55, 486-493.

Nwosu, S. O., Schleicher, J. C., & Scurto, A. M. (2009). High-pressure phase equilibria for the synthesis of ionic liquids in compressed CO2 for 1-hexyl-3-methylimidazolium bromide with 1-bromohexane and 1-methylimidazole. J. Supercrit. Fluids, 51(1), 1-9. DOI:10.1016/j.supflu.2009.07.006

Nwosu, S. O., Schleicher, J. C., & Scurto, A. M. (2009). High-Pressure Phase Equilibria for the Synthesis of Ionic Liquids in Compressed CO2 for 1-Hexyl-3-Methyl-Imidazolium Bromide with 1-Bromohexane and 1-Methylimidazole. J. Supercrit. Fluids , 51(1), 1-9.

Ren, W. Rutz, B. & Scurto, A. M. (2009). High-pressure phase equilibrium for the hydroformylation of 1-octene to nonanal in compressed CO2. J. Supercrit. Fluids, 51(2), 142-147. DOI:10.1016/j.supflu.2009.08.003

Ren, W. Rutz, B. & Scurto, A. M. (2009). High-Pressure Phase Equilibrium for the Hydroformylation of 1-Octene to Nonanal in Compressed CO2. J. Supercrit. Fluids, 51, 142-147.

Ahosseini, A. Ren, W. & Scurto, A. M. (2009). Hydrogenation in biphasic ionic liquid-carbon dioxide systems. ACS Symp. Ser., 1006(Gas-Expanded Liquids and Near-Critical Media), 218-234. DOI:10.1021/bk-2009-1006.ch011

Tang, S. Scurto, A. M., & Subramaniam, B. (2009). Improved 1-Butene/isoButane Alkylation with Acidic Ionic Liquids and Tunable Acid/Ionic Liquid Mixtures. J. Catal, 268(2), 243-250. DOI:10.1016/j.jcat.2009.09.022

Schleicher, J. & Scurto, A. M. (2009). Kinetics and Solvent Effects in the Synthesis of Ionic Liquids: Imidazolium. Green Chem, 11, 694-703.

Ren, W. Scurto, A. M., Shiflett, M. B., & Yokozeki, A. (2009). Phase behavior and equilibria of ionic liquids and refrigerants: 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][Tf2N]) and R-134a. ACS Symp. Ser., 1006(Gas-Expanded Liquids and Near-Critical Media), 112-128. DOI:10.1021/bk-2009-1006.ch006

Ren, W. & Scurto, A. M. (2009). Phase Equilibria of Imidazolium Ionic Liquids and the Refrigerant Gas, 1,1,1,2-Tetrafluoroethane (R-134a). Fluid Phase Equil, 286, 1-7.

Hutchenson, K. W., Scurto, A. M., & Subramaniam, B. (2009). Preface. ACS Symp. Ser., 1006(Gas-Expanded Liquids and Near-Critical Media), xi-xii. DOI:10.1021/bk-2009-1006.pr001

Brennecke, J. F., & Scurto, A. M. (2009). Reply to "Comment on "Characterization of the Ability of CO2 to Act as an Antisolvent for Ionic Liquid/Organic Mixtures’". J. Phys. Chem. B, 113(18), 6581. DOI:10.1021/jp809307r

Xie, Z. Snavely, W. K., Scurto, A. M., & Subramaniam, B. (2009). Solubilities of CO and H2 in Neat and CO2-Expanded Hydroformylation Reaction Mixtures Containing 1-Octene and Nonanal up to 353.15 K and 9 MPa. J. Chem. Eng. Data, 54(5), 1633-1642. DOI:10.1021/je900148e

Xie, Z. Snavely, W. K., Scurto, A. M., & Subramaniam, B. (2009). Solubilities of CO and H2 in Neat and CO2-Expanded Hydroformylation Reaction Mixtures Containing 1-Octene and Nonanal up to 353.15 K and 9 MPa. J. Chem. Eng. Data, 54(5), 1633-1642.

Ahosseini, A. Ren, W. & Scurto, A. M. (2009). Understanding Biphasic Ionic Liquid/CO2 Systems for Homogeneous Catalysis: Hydroformylation. Ind. Eng. Chem. Res., 48(9), 4254-4265. DOI:10.1021/ie801871k

Ahosseini, A. Ren, W. & Scurto, A. M. (2009). Understanding Biphasic Ionic Liquid/CO2 Systems for Homogeneous Catalysis: Hydroformylation. Ind. Eng. Chem. Res, 48(9), 4254–4265.

Ahosseini, A. Ortega, E. Sensenich, B. & Scurto, A. M. (2009). Viscosity of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids saturated with compressed CO2. Fluid Phase Equilib., 286(1), 62-68. DOI:10.1016/j.fluid.2009.07.013

Ahosseini, A. Ortega, E. Sensenich, B. & Scurto, A. M. (2009). Viscosity of n-Alkyl-3-methyl-imidazolium Bis(Trifluoromethylsulfonyl)Amide Ionic Liquids Saturated with Compressed CO2. Fluid Phase Equil, 286, 62-68.

Gangu, S. A., Weatherley, L. R., & Scurto, A. M. (2009). Whole-Cell Biocatalysis with Ionic Liquids. Curr. Org. Chem, 13(13), 1242-1258.

Detamore, M. Singh, M. Scurto, A. M., & Berkland, C. (2009). Microsphere-based materials with predefined 3D-spatial and temporal control of biomaterials, porosity and/or bioactive signals.(Copyright (C) 2015 American Chemical Society (ACS). All Rights Reserved.), 49 pp., Chemical Indexing Equivalent to 150:431853 (WO). University of Kansas, USA .

Dzielawa, J. A., Rubas, A. V., Lubbers, C. Stepinski, D. C., Scurto, A. M., Barrans, R. E., Dietz, M. L., Herlinger, A. W., & Brennecke, J. F. (2008). Carbon Dioxide Solubility Enhancement through Silicone Functionalization: "CO2-philic" Oligo(dimethylsiloxane)-substituted Diphosphonates. Sep. Sci. Technol., 43(9-10), 2520-2536. DOI:10.1080/01496390802122063

Dzielawa, J. A., Rubas, A. V., Lubbers, C. Stepinski, D. C., Scurto, A. M., Barrans, R. E., Dietz, M. L., Herlinger, A. W., & Brennecke, J. F. (2008). Carbon Dioxide Solubility Enhancement through Silicone Functionalization: ‘‘CO2-philic’’ Oligo(dimethylsiloxane)-substituted Diphosphonates. Sep. Sci. Tech, 43, 2520-2536.

Scurto, A. M., Newton, E. Weikel, R. R., Draucker, L. Hallett, J. Liotta, C. L., Leitner, W. & Eckert, C. A. (2008). Melting point depression of ionic liquids with CO2: phase equilibria. Ind. Eng. Chem. Res., 47(3), 493-501. DOI:10.1021/ie070312b

Scurto, A. M., Newton, E. Weikel, R. R., Draucker, L. Hallett, J. Liotta, C. L., Leitner, W. & Eckert, C. A. (2008). Melting Point Depression of Ionic Liquids with CO2: Phase Equilibria. Ind. Eng. Chem. Res, 47(3), 493-501.

Ahosseini, A. & Scurto, A. M. (2008). Viscosity of imidazolium-based ionic liquids at elevated pressures: Cation and anion effects. Int. J. Thermophys, 29, 1222-1243.

Ren, W. & Scurto, A. M. (2007). High-Pressure Phase Equilibria with Compressed Gases. Rev. Sci. Instrum, 78, 125104.

Ahosseini, A. Ren, W. & Scurto, A. M. (2007). Homogeneous Catalysis in Biphasic Ionic Liquids/CO2 Systems. Chem. Today, 25(2), 40-42.

Ren, W. & Scurto, A. M. (2007). High-pressure phase equilibria with compressed gases. The Review of scientific instruments, 78(12), 125104. DOI:10.1063/1.2814025

Dietz, M. L., McAlister, D. R., Stepinski, D. Zalupski, P. R., Dzielawa, J. A., Barrans, R. E., Hess, J. N., Rubas, A. V., Chiarizia, R. Lubbers, C. Scurto, A. M., Brennecke, J. F., & Herlinger, A. W. (2006). Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Solubility Enhancement through Silicon Functionalization. In P. Wang & T. Zachry (Eds.), Nuclear Waste Management: Accomplishments of the Environmental Management Science Program. Washington, DC: American Chemical Society.

Scurto, A. M. (2006). Melting Point Depression of Organic Ionic Solids/Liquids with Carbon Dioxide for Enhanced Catalytic Processes. Chem. Comm, 3681-3683.

Scurto, A. M., & Brennecke, J. F. (2006). Ternary Phase Behavior of Ionic Liquid (IL)-Organic-CO2 Systems. Ind. Eng. Chem. Res., 45(16), 5574-5585. DOI:10.1021/ie0511783

Aki, K. Scurto, A. M., & Brennecke, J. F. (2006). Ternary Phase Behavior of Ionic Liquid (IL)-Organic-CO2 Systems. Ind. Eng. Chem. Res, 45(16), 5574-5585.

Scurto, A. M., & Leitner, W. (2006). Expanding the useful range of ionic liquids: melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions. Chemical communications (Cambridge, England),(35), 3681-3. DOI:10.1039/b606130c

Scurto, A. M. (2005). Introduction to Catalysis in Supercritical Solvents. In B. Cornils, W. A. Herrmann, I. T. Horváth, W. Leitner, S. Mecking, H. Olivier-Bourbigou, & D. Vogt (Eds.), Multiphase Homogeneous Catalysis (Vol. 2). Wiley-VCH.

Leitner, W. & Scurto, A. M. (2004). Immobilization of Organometallic Catalysis Using Supercritical Fluids. In B. Cornils & W. A. Herrmann (Eds.), Aqueous-Phase Organometallic Catalysis - Concepts and Applications(2nd ed.) (pp. 665-685). Wiley-VCH.

Lipovsek, D. Olsen, M. Armstrong, K. Scurto, A. M., Tidor, B. Klibanov, A. M., & Wittrup, K. D. (2004). Directed evolution of horseradish peroxidase using yeast display. Protein Science, 13, 97.

Lubbers, C. Scurto, A. M., & Brennecke, J. F. (2003). Experimental Measurement and Modeling of the Vapor-Liquid Equilibrium of Carbon Dioxide + β–Diketone Chelating Agents. In A. S. Gopalan, C. M. Wai, & H. Jacobs (Eds.), Supercritical Carbon Dioxide: Separations and Processes. Washington, DC: American Chemical Society.

Scurto, A. M., Aki, K. & Brennecke, J. F. (2003). Carbon Dioxide Induced Separation of Ionic Liquids and Water. Chem. Comm, 572-573.

Lubbers, C. M., Scurto, A. M., & Brennecke, J. F. (2003). Experimental measurement and modeling of the vapor-liquid equilibrium of β-diketones with CO2. ACS Symp. Ser., 860(Supercritical Carbon Dioxide), 245-258.

Scurto, A. M., Xu, G. Brennecke, J. F., & Stadtherr, M. A. (2003). Phase Behavior and Reliable Computation of High-Pressure Solid-Fluid Equilibrium with Cosolvents. Ind. Eng. Chem. Res., 42(25), 6464-6475. DOI:10.1021/ie030161m

Scurto, A. M., Xu, G. Brennecke, J. F., & Stadtherr, M. A. (2003). Phase Behavior and Reliable Computation of Solid-Fluid Equilibrium with Cosolvents: Liquid Phase Detection. Ind. Eng. Chem. Res, 42, 6464-6475.

Scurto, A. M., Aki, S. N., & Brennecke, J. F. (2003). Carbon dioxide induced separation of ionic liquids and water. Chemical communications (Cambridge, England),(5), 572-3.

Scurto, A. M., & Brennecke, J. F. (2002). CO2 as a Separation Switch for Ionic Liquid/Organic Mixtures. J. Am. Chem. Soc., 124(35), 10276-10277. DOI:10.1021/ja0268682

Scurto, A. M., Aki, K. & Brennecke, J. F. (2002). CO2 as a Separation Switch for Ionic Liquid/Organic Mixtures. J. Amer. Chem. Soc, 124, 10276-10277.

Scurto, A. M. (2002). High-pressure phase and chemical equilibria of beta-diketone ligands and chelates with carbon dioxide.

Scurto, A. M., Aki, S. N., & Brennecke, J. F. (2002). CO(2) as a separation switch for ionic liquid/organic mixtures. Journal of the American Chemical Society, 124(35), 10276-7.

Scurto, A. M., Lubbers, C. M., Xu, G. & Brennecke, J. F. (2001). Experimental measurement and modeling of the vapor-liquid equilibrium of carbon dioxide + chloroform. Fluid Phase Equilib., 190(1-2), 135-147. DOI:10.1016/S0378-3812(01)00599-4

Scurto, A. M., Lubbers, C. Xu, G. & Brennecke, J. F. (2001). Experimental Measurement and Modeling of Vapor-Liquid Equilibria of Carbon Dioxide + Chloroform. Fluid Phase Equil, 190, 135-147.

Escobedo-Alvarado, G. N., Sandler, S. I., & Scurto, A. M. (2001). Modeling of solid-supercritical fluid phase equilibria with a cubic equation of state-Gex model. J. Supercrit. Fluids, 21(2), 123-134. DOI:10.1016/S0896-8446(01)00092-4

Alvarado, G. Sandler, S. I., & Scurto, A. M. (2001). Modeling Solid-Fluid Equilibria with a Cubic Equation of State-Gex Model. J. Supercrit. Fluids, 21, 123-134.

Scurto, A. M., Lubbers, C. M., & Brennecke, J. F. (2001). Phase equilibria of chelating agents and metal chelates in high pressure carbon dioxide for in situ extraction. Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, United States, April 1-5, 2001, IEC-086.

Roggemann, E. Scurto, A. M., & Brennecke, J. F. (2001). Spectroscopy, Solubility and Modeling of Cosolvent Effects on Metal Chelate Complexes in Supercritical Carbon Dioxide Solutions. Ind. Eng. Chem. Res, 40, 980-989.

Xu, G. Scurto, A. M., Castier, M. Brennecke, J. F., & Stadtherr, M. A. (2000). Reliable Computation of High-Pressure Solid-Fluid Equilibrium. Ind. Eng. Chem. Res., 39(6), 1624-1636. DOI:10.1021/ie990653s

Selected Grants

Scurto, Aaron, (Co-Principal), Subramaniam, Bala, (Principal), Shiflett, Mark, (Co-Principal), Fundamentals of Conventional C4-Alkylation to Guide Process Innovations, DuPont, $205,760, (05/02/2017 - 05/01/2018). For Profit (company/corporation). Status: Funded.

Scurto, Aaron M, PhD(Co-Principal), Shiflett, Mark B, PhD(Principal), Electro-reduction of metals in supercritical fluid-room temperature ionic liquids, Department of Energy, Idaho National Laboratory, $46,000, (11/01/2017 - 04/30/2018). Federal. Status: Funded.

Scurto, Aaron, (Co-Principal), Subramaniam, Bala, (Principal), Shiflett, Mark, (Co-Principal), Fundamentals of Conventional C4-Alkylation to Guide Process Innovations, DuPont, $205,760, Submitted 03/30/2017 (04/01/2017 - 03/31/2018). For Profit (company/corporation). Status: Proposal Submitted.

Scurto, Aaron, (Principal), Depcik, Christopher, (Co-Principal), Stagg-Williams, Susan, (Co-Principal), Initial Studies in the High-Pressure Viscosity and Phase Behavior of ExxonMobil Diesel Blends, ExxonMobil Corporation, $25,753, Submitted 09/11/2017 (11/01/2017 - 02/28/2018). For Profit (company/corporation). Status: Funded.

Education

  • BChE University of Delaware, 1997 (Thesis & Bioengineering concentration)
  • PhD, University of Notre Dame, 2002 (with Prof. Joan F. Brennecke
  • NSF Postdoctoral Fellow, RWTH-Aachen, Germany, 2003 (with Prof. Dr. Walter Leitner)
  • Postdoctoral Associate, MIT, 2004 (with Prof. Alexander Klibanov)

Research Interests

Chemo-Enzymatic Catalysis - Asymmetric/Enantioselective Catalysis:

  • Organometallic Catalysis
  • Biocatalysis

Nano-scale Materials Production and Processing in Supercritical Fluids:

  • Nanocomposites for Gas Separations
  • Semi-conductor Metal removal from nano-scale lithographies

Green/Sustainable Chemistry and Engineering
Alternative Solvents: Supercritical Fluids & Ionic Liquids
High-Pressure Phase Behavior & Modeling

Professor Scurto's research focuses on the relationship between the solvent and catalysts or metal complexes. Emphasis is on homogeneous catalysts (soluble metal complexes or bio-catalysis/enzyme catalysts) in a variety of reactions, but primarily enantio-selective (chiral) reactions. The fine chemical and pharmaceutical industries of tomorrow will be increasingly applying both organometallic and biocatalysis for the complete synthesis of desired compounds. Understanding the limits of the individual methods and possible coordination schemes is of potential interest. Spectroscopic techniques are used to probe the molecular level interactions to interpret macro-scale results such as reaction rates, and chemo-, region- and enantio-selectivity. Understanding how the solvent affects the catalyst and reactants both in terms of catalysis and phase equilibrium thermodynamics is of utmost importance in homogeneous catalysis. Often, catalyst performance is sacrificed for ease of separation and ability to recycle the metal complex. Novel schemes are being develop for reaction/separation processes. Among the different solvents of interest are supercritical fluids such as CO2, and a new class of solvents called ionic liquids (organic salts liquid near ambient conditions). These fluids are being considered as possible organic solvent replacements due to their environmentally benign or completely nonvolatile nature. The tenets of green/sustainable chemistry and engineering are pursued to provide real alternatives to current polluting process for both existing products and technologies and to use their unique properties to develop new ones. This includes novel materials processing ideas, such as the use of compressed CO2 to remove metals from nano-scale semiconductor geometries and to create nano-composite membranes with metal complexes for enhance gas separation, e.g. hydrogen recovery. Reliable modeling of phase behavior is extremely important for the development of compressed CO2 processes.


Peer Reviewed Publications

  • Scurto, A.M. Leitner, W.L. et al. Catalysis in Supercritical Fluids. In Organometallic Catalysis; Cornils, B.; Herrmann, W.A., Eds.; Wiley-VCH Publishing, Weinheim, In Press 2004.
  • Scurto, A.M.; Leitner, Melting Point Depression of Organic Ionic Solids/Liquids with Carbon Dioxide for Enhanced Catalytic Processes. Submitted to Chem. Comm. 2003.
  • Scurto, A.M.; Brennecke, J.F. High Pressure Phase Equilibrium of bDiketone Chelating Agents and Chelates in Carbon Dioxide for the in situExtraction of Metals. In Preparation for Submission to AIChE J. 2004
  • Leitner, W.; Scurto, A.M. Immobilized Organometallic Catalysis in Supercritical Fluids. In Aqueous-Phase Organometallic Catalysis: Concepts and Applications 2nd Edition; Cornils, B.; Herrmann, W.A., Eds.; Wiley-VCH Publishing, Weinheim, In Press 2004.
  • Dietz, M.L.; McAlister, D.R.; Stepinski, D.; Zalupski, P.R.; Dzielawa, J.A.; Barrans, R.E.; Hess, J.N.; Rubas, A.V.; Chiarizia, R.; Lubbers, C.; Scurto, A.M.; Brennecke, J.F.; Herlinger, A.W. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Solubility Enhancement through Silicon Functionalization. In Nuclear Waste Management: Accomplishments of the Environmental Management Science Program. Ed. T. Zachry; ACS Symposium Series; American Chemical Society: Washington, DC , In Press 2004.
  • Scurto, A. M.; Xu, G.; Brennecke, J. F; Stadtherr, M. A. Phase Behavior and Reliable Computation of Solid-Fluid Equilibrium with Cosolvents: Liquid Phase Detection. Ind. Eng. Chem. Res. 2003, 42,6464-6475
  • Scurto, A. M.; Aki, S. N. V. K; Brennecke, J. F. Carbon Dioxide Induced Separation of Ionic Liquids and Water. Chem. Comm. 2003, 572-573.
  • Scurto, A. M.; Aki, S. N. V. K; Brennecke, J. F. CO2 as a Separation Switch for Ionic Liquid/Organic Mixtures. J. Amer. Chem. Soc. 2002, 124, 10276-10277.
  • Lubbers, C.; Scurto, A. M.; Brennecke, J. F. Experimental Measurement and Modeling of the Vapor-Liquid Equilibrium of Carbon Dioxide + bDiketone Chelating Agents. In Supercritical Carbon Dioxide: Separations and Processes; Gopalan, A.S; Wai, C.M.; Jacobs, H., Eds.; ACS Symposium Series 860; American Chemical Society: Washington, DC, 2003.
  • Scurto, A. M.; Lubbers, C.; Xu, G.; Brennecke, J. F. Experimental Measurement and Modeling of Vapor-Liquid Equilibria of Carbon Dioxide + Chloroform. Fluid Phase Equil. 2001, 190, 135-147.
  • Alvarado, G.; Sandler, S. I.; Scurto, A. M. Modeling Solid-Fluid Equilibria with a Cubic Equation of State-Gex Model. J. Supercrit. Fluids 2001, 21, 123-134.
  • Roggemann, E.; Scurto, A. M.; Brennecke, J.F. Spectroscopy, Solubility and Modeling of Cosolvent Effects on Metal Chelate Complexes in Supercritical Carbon Dioxide Solutions. Ind. Eng. Chem. Res. 2001, 40, 980-989.
  • Xu, G.; Scurto, A. M.; Castier, M.; Brennecke, J. F.; Stadtherr, M. A. Reliable Computation of High Pressure Solid-Fluid Equilibrium. Ind. Eng. Chem. Res. 2000, 39, 1624-1636. ranes with metal complexes for enhance gas separation, e.g. hydrogen recovery. Reliable modeling of phase behavior is extremely important for the development of compressed CO2 processes.

Upcoming Events and Deadlines

Sunday, April 14th - GEA5K | Starts at 8am | 2101 Constant Ave 

Friday, May 3rd - Paul Willhite's Retirement Celebration | 6-8pm | Beren Petroleum Conference Center

Saturday, May 4th - Annual Departmental Awards Banquet | 5:30 - 8:30pm | KU Memorial Union's Ballroom

Saturday, May 18th - School of Engineering Recognition Ceremony | starts at 8am | Allen Fieldhouse


CPE Weekly Graduate Seminar Schedule 

For School of Engineering Events, Click HERE.

Looking for Graduate Workshops and Events? Click HERE for Engineering and HERE for the COGA calendar

University Events can be found HERE